Microwave Observatory of Subcanopy and Subsurface (MOSS) IIP: Final Results and Next Steps
نویسندگان
چکیده
The microwave observatory of subcanopy and subsurface (MOSS) project has been supported under the ESTO IIP to develop technologies for a SAR mission that provides global observations of soil moisture under substantial vegetation canopies and at useful depths. This VHF/UHF polarimetric SAR is designed to provide 7-10 day repeat observations of soil moisture under substantial vegetation canopies and at depths reaching 1-5 meters, at 1 Km resolution. Due to the rapid repeat cycle, the required swath width is 300-400 Km, which must be realized by a 30m long antenna. Conventional array implementations would result in a mass of over 4000 Kg, whereas with the technology proposed and demonstrated in this project, the total antenna mass becomes about 400 kg. This antenna concept is implemented by a dual-stack patch array feed illuminating a 30m mesh reflector to synthesize the required long rectangular apertures and achieve the wide swath. This feed system was designed, and a prototype built and demonstrated. Initially, a scaled version was built and tested, which was also integrated with a scaled reflector antenna for demonstration of the overall antenna system. The full-size low frequency feed was also built and its performance successfully demonstrated. The technology was therefore taken to TRL 5-6 from 3. Other components of this project were the demonstration of the science data and products, which was achieved through a tower-based VHF/UHF radar. Experimental data were generated for deep penetration in the Arizona desert, as well as for forest penetration in a dense forest in Oregon. The soil moisture products were demonstrated and in so doing, a novel integrated inversion-processing algorithm was developed. This presentation will cover the projects accomplishment and suggest some possible next steps to realize this concept as an Earth orbiting mission.
منابع مشابه
Latest Advances in the Microwave Observatory of Subcanopy and Subsurface (MOSS) Project
Measurements of deep and subcanopy soil moisture are critical in understanding the global water and energy cycle, as well as the interactions of the carbon and water cycles, but are presently not available on a synoptic basis. In this paper, a lowfrequency UHF/VHF radar mission concept is presented and technology challenges to implement it are discussed. This mission concept is currently being ...
متن کاملAdvancing the AirMOSS P-Band Radar Root Zone Soil Moisture Retrieval Algorithm via Incorporation of Richards’ Equation
P-band radar remote sensing applied during the Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS) mission has shown great potential for estimation of root zone soil moisture. When retrieving the soil moisture profile (SMP) from P-band radar, a mathematical function describing the vertical moisture distribution is required. Because only a limited number of observations are avai...
متن کاملCharacterization of Vegetation and Soil Scattering Mechanisms across Different Biomes using P-band SAR Polarimetry
Understanding the scattering mechanisms from the ground surface in the presence of different vegetation densities is necessary for the interpretation of P-band Synthetic Aperture Radar (SAR) observations and for the design of geophysical retrieval algorithms. In this study, a quantitative analysis of vegetation and soil scattering mechanisms estimated from the observations of an airborne P-band...
متن کاملDesign and fabrication of a high-Q near-field probe for subsurface crack detection
Non-destructive detection and evaluation of invisible cracks in metal structures is an important matter in several critical environments including ground transportation, air transportation and power plants. In this paper, a high-Q near-field Microwave probe is designed and fabricated using defected ground structures for surface and subsurface crack detection in metal structures. For this purpos...
متن کاملSynthesis and Characterization of α-Fe2O3 Nanoparticles by Microwave Method
α-Fe2O3 (hematite) is the most stable iron oxide under ambient conditions. This transition metal oxide has been extensively investigated because it has unique electrical and catalytic properties. In this report, a novel microwave method for preparation of α-Fe2O3 nanoparticles has been developed. The process contained two steps: first, precursor were obtained from a mixed solution of 50 ml of 0...
متن کامل